The extremals of Minkowski’s quadratic inequality

نویسندگان

چکیده

In a seminal paper “Volumen und Oberfläche” (1903), Minkowski introduced the basic notion of mixed volumes and corresponding inequalities that lie at heart convex geometry. The fundamental importance characterizing extremals these was already emphasized by himself, but has to date only been resolved in special cases. this paper, we completely settle Minkowski’s quadratic inequality, confirming conjecture R. Schneider. Our proof is based on representation arbitrary bodies as Dirichlet forms associated certain highly degenerate elliptic operators. A key ingredient quantitative rigidity property

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremals for a Moser-jodeit Exponential Inequality

Trudinger and Moser, interested in certain nonlinear problems in differential geometry, showed that if |∇u|q is integrable on a bounded domain in R with q ≥ n ≥ 2, then u is exponentially integrable there. Symmetrization reduces the problem to a one-dimensional inequality, which Jodeit extended to q > 1. Carleson and Chang proved that this inequality has extremals when q ≥ 2 is an integer. Henc...

متن کامل

Quadratic order conditions for bang-singular extremals

This paper deals with optimal control problems for systems affine in the control variable. We have nonnegativity constraints on the control, and finitely many equality and inequality constraints on the final state. First, we obtain second order necessary optimality conditions. Secondly, we get a second order sufficient condition for the scalar control case. The results use in an essential way t...

متن کامل

Optimal decay of extremals for the fractional Sobolev inequality

We obtain the sharp asymptotic behavior at infinity of extremal functions for the fractional critical Sobolev embedding.

متن کامل

Analyticity of Extremals to the Airy Strichartz Inequality

We prove that there exists an extremal function to the Airy Strichartz inequality ‖e−t∂3 xf‖L8t,x(R×R) ≤ C‖f‖L2(R), by using the linear profile decomposition. Furthermore we show that, if f is an extremal, then f is exponentially decaying in the Fourier space and so f can be extended to be an entire function on the complex domain.

متن کامل

Optimization Problem for Extremals of the Trace Inequality in Domains with Holes

Let Ω be a bounded smooth domain in R with N ≥ 2 and 1 < p < ∞. We denote by p∗ the critical exponent for the Sobolev trace immersion given by p∗ = p(N − 1)/(N − p) if p < N and p∗ = ∞ if p ≥ N . For any A ⊂ Ω, which is a smooth open subset, we define the space W 1,p A (Ω) = C ∞ 0 (Ω \A), where the closure is taken in W −norm. By the Sobolev Trace Theorem, there is a compact embedding (1.1) W 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2022

ISSN: ['1547-7398', '0012-7094']

DOI: https://doi.org/10.1215/00127094-2021-0033